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Summary 

Evidently the flow field defined in the title contains three rather than two discernable regimes. The first is the 
vicinity of the cylinder where the flow is viscosity dominated. The second is known as the outer field. There 
space variations are milder, viscosity is much less effective and the influence of the uniform parallel stream is 
dominant.  In this regime the stream function representing the obstacle's disturbance is governed by the 
fourth-order Oseen equation. However, evidently its recorded solution fails over the half-plane downstream of 
the cylinder's axis. It is the author 's  contention that this failure reflects the existence of a third regime - the 
wake-where space variations are sharp but  only in the transverse direction. To obtain a solution for the entire 
flow field an additional low-Reynolds-number expansion is constructed. It is matched with the well-known ones 
prevailing in the inner and outer regimes. 

1. Introduction 

In terms of cartesian co-ordinates (x, y), which are scaled with respect to the radius of the 
cylinder a, the governing equation for the flow problem under discussion reads 

Re O( Vz6,  tk) = v'*4'. (1) 
a(x ,y )  

Here ~ is the stream function which is normalized with respect to Ua 2. The undisturbed 
stream velocity is U and + x directed. The kinematic viscosity is v so that Reynolds 
number Re is equal to Ua/v. 

Inspired by various preceeding authors Proudman & Pearson [1] proposed the follow- 
ing form of low-Reynolds-number solution: 

~p = ~ " -  Ae/~i)(x, y),  

1 ~-~__.l, t0~ t y ) .  
~k=~kt°~-~ee Y+ ReVt ~X, 

(2) 

(3) 

Equations (2) and (3) express the solution in the inner and outer fields, respectively. In 
these relationships the gauge function A is given by 

A = ( In ( l /Re)  + k)  - t ,  (4) 
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and Kaplun [2] suggested the following choice of k: 

k = (ln 4 + 1 /2  - 3,) 

where 3, is Euler's constant. 
This form hinges on an assumption concerning characteristic lengths. Thus, in the inner 

field space variables are scaled with respect to a. Far from the obstacle the cartesian 
co-ordinates (X, Y) are scaled with respect to the viscous length (p/U). The point made 
here is that a also characterizes transverse variations in a wake region which extends all 
the way to infinity. Therefore, in order to cover the field an additional, third, expansion 
~p(~)(X, y)  must be constructed and matched with ~k (i) and q/o). 

2. Domain of validity of outer expansion 

The wake region leaves an imprint on the recorded solution for ~k~ °). It is barely 
perceptible and therefore has not been noticed for long. In fact it was accidently 
discovered when Bentwich and Miloh [3] developed a hitherto unknown integral form of 
expression for the disturbance stream function in the outer field. They have done that in 
their treatment of unsteady low-Reynolds-number flows past a cylinder. But for steady 
flows equation (24) of [3] can evidently be reduced to 

x 0 - 
~o) = _ 2 f "  ~ ~ (In( R ) + exp(~/2)  K o ( R / 2 ) ) d  (5) 

where 

/~2 = ~2 + y 2  

and K 0 is the modified Bessel function of the second kind. Changing variables one gets 

~k~ ° '=  2 ~ y  f0°° [ln R + eX/2Ko(R/2)] d,/ (5') 

where 

.,~ ~-.-~ X --  '1~, ~f~2 _~ ~ 2  + y 2 .  

This form is, in fact, the sum of two uniform distributions of harmonic and rotational 
singular solutions of the Oseen equation. The nature of the singularities of these two types 
of solutions at their loca! origin X = ,/, Y = 0 is similar but not identical. To be precise the 
small R expansion of e X/2Ko(R/2) commences with ( - I n  R) which is cancelled by the 
first component of the integrand. However, the subsequent terms in that expansion, which 
are of the form X In k and k 2 In R, remain uncancelled. Moreover, they are singular. 
Therefore one many not differentiate the integral of relationship (5') with respect to Y 
across the horizontal half-plane downstream of the cylindrical obstacle's axis. It follows 
that Oseen's equation, which is a differential equation, is inapplicable there. Consequently, 
as contended and contrary to the prevailing assumptions, the outer field does not 
surround the cylindrical obstacle. 
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This incompleteness is, of course, also present in the unsteady solution developed in [3] 
which represents the flow caused by a cylinder departing impulsively from rest. In a 
subsequent paper by the same authors [4] it was completed by constructing an additional 
expansion which covers the region where the unsteady Oseen solution fails. That expan- 
sion represents the timewise evolution of the wake region. Of course, as time progresses 
the unsteady Oseen-flow solution of [3] approaches the steady one given by equation (5) or 
(5') and the unsteady wake solution developed in [4] becomes that given in the next 
section. However, it is the author's view that one should study the classical problem of 
steady flow past a cylinder on its own, rather than as an eventual situation arrived at by 
the transient process considered in [3] and [4]. Therefore the incompleteness will be 
presently pointed to assuming that the flow is steady and has always been so. 

Strictly speaking, in order to show that incompleteness, the arguments concerning the 
form (5) suffice. Furthermore, as a rule the onus is on whoever proposes a solution to 
define and prove its domain of validity. Therefore, it is those who claim that the Oseen 
solution can represent the field surrounding the obstacle that must substantiate this 
contention. However, under the circumstances the author has no choice other than lead an 
uphill fight and show that the recorded solution for ~0) and that represented by the form 
(5) or (5') are one and the same and therefore fails to hold over the above-mentioned 
half-plane. Substitute in the following formula 

(o) ~ ,t,(o) ] 
t~(°'(X, Y)= f(x'Y) [~(X,, r')dX' +"r' ( , Y')dY' 

J < x , : - . ) t  a x  
(6) 

the well-known expressions for the steady disturbance velocity components as given in 
many texts like Van Dyke's [5], 

Oq,]°)/aY = 2 ( (O/OX)[ ln(  R ) + exp(X/2)  K o ( R /2 ) ]  

- exp()( /2)  K o ( R / 2 ) ) ,  (7) 

0 ~b]°)/a X = - 2(0/0Y) [ln(R) + exp()( /2)  K o ( R/2) ] .  (8) 

Then note that there are many ways to combine equations (6) (7) and (8) provided two 
conditions are satisfied. Firstly, the paths of integration must emanate far upstream where 
~b~ °) vanishes. Secondly, a pair of such paths leading to adjacent points must not form a 
curve enveloping the origin. The latter condition must be imposed in view of the singular 
nature of equations (7) and (8) and the multi-valuedness that may result thereof. It follows 
from the foregoing that the constant Y lines are legitimate paths of integration, whence the 
equivalence of the recorded solution for ~0) and the form (5). 

The failure of the solution for ~k~ °) over the half-plane downstream of the axis will now 
be explained. Clearly, equation (5) can be applied as it is, to calculate ~k~ °) and any of its 
X- and Y-derivatives everywhere except over that plane. To obtain ~0) and its derivatives 
there, one must adopt the following procedure. First evaluate the appropriate integral 
along Y = + ~ and then let c approach zero. Such limit process yields 

e p ( x ,  +o) = ¢,°)(x, - o )  = o (9) 

because the contributions of the Y-derivatives of the singularities of In(R) and Ko ( R / 2  ) 
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to the integral cancel out. However, this is not true for the third Y-derivatives of these. 
Thus fairly straightforward calculations produce the following result 

02+  °) °) 

or  2 (x ,  + 0 ) - - - ( x , -  or (10) 

The first and third derivatives of ~k~ °) which are even in Y, are evidently the same whether 
one approaches the positive X-axis from above or below. The double-valuedness implied 
by the result (10) renders the Oseen solution, and consequently also expansion (3), 
inapplicable at the horizontal half-plane under discussion. The limiting value of ~b~ °) and 
its derivatives, which were obtained here, are used below in the construction of an 
additional expansion that holds over that plane and its immediate transverse vicinity. 

Note that the result (10) is dissimilar to that obtained by simply differentiating 
equation (7) with respect to Y. Of course, this is precisely the point made herewith, namely 
that ~p~0) fails over the plane Y = 0, 0 < X < oo, just as it does at the origin. Relationship 
(7) and (8) cannot be differentiated there, and therefore both these regions should be 
excluded from the outer field. Admittedly the exclusion of the latter is much more obvious 
while the double-valuedness associated with the former was arrived at by a somewhat 
sophisticated integration process. However, both exclusions are direct consequences of the 
inapplicability of the Oseen model. Thus, by shrinking a finite-sized cylindrical obstacle to 
a line, as it is represented in the Oseen field, one produces infinite gradients there. The 
exclusion of that point is therefore obvious and universally accepted. But it has not been 
noticed that the troubles do not stop there. The Oseen equation accounts for vorticity 
convection, throughout the field, by the term 0( ~2~p)/0X. Thus, according to that model, 
vorticity, which is generated at an enormous rate at the line obstacle, would have poured 
straight downstream, if indeed the downstream plane and its immediate transverse vicinity 
were included. It follows that the Oseen model cannot hold there. 

It is of interest to note that the findings presented herewith hinge on physical and not 
only analytical premises. Indeed one could combine relationships (6), (7) and (8) subject to 
the above-said conditions and obtain a solution which is single-valued and continuous 
everywhere except, for example, O = ~r/3, 0 < R < oo. In view of the singular nature of 
relationships (7) and (8) this newly-defined solution fails over 0 = 7r/3, rather than 0 = 0. 
But such solutions are ruled out on physical grounds by invoking symmetry. 

3. The wake region 

The surface where the outer field fails is viewed here as a wake region. It is taken to be of 
a transverse width which is finite and of order a. Since this length is much smaller than 
v/U, the wake region appears to be of zero thickness in the (X, Y) field. Such assumption 
is understandable from a physical view point. The region under discussion is likened to a 
' shadow'  cast by a cylinder placed in a parallel uniform stream. 

It follows from that assumption that the transverse variations are characterized by a 
but not the axial ones. Therefore the co-ordinates associated with the wake are assumed to 
be (X, y). This is verified by successfully matching a solution developed for the wake 
region ~k(w)( X, y)  with ~b (°) and q,(i). 
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In fact assuming that q~{~)(X,y) matches q~(°}(X, Y) the form of expansion of the 
former is obtained by recasting ~kt°)(X, Y) in terms of (X, y)  as follows 

o~ an/,(O) } 
A y,  v v_~ l  (X,  _+0)yORen , y X 0 .  

~Pt°)=Y+Ree n=0 3Y 
(11) 

In view of relationships (7) and (9) one gets 

~b '2' - y + A{ y [ 2 X -  ' - exp( X / 2  ) Kl ( X / 2  ) 

- e x p (  X / 2 ) K o (  X/2)]  }, 0 2 )  

and this is indeed the solution for the entire wake region. Within the assumed order of 
approximation it satisfies the appropriate equation because when recast in terms of (X, y)  
equation (1) reduces to 

O4q/w) 3(32q/w)/3y 2, ~p~')) 
34q~'~-------~) + Re 2 2a---~-fy 2 t- 

ay 4 a ( X , y )  
+ O(Re 4) = 0. (19 

It also matches tp u) when in that expansion only two terms are retained. 
It has thus been demonstrated that a wake region exists and that its space variations in 

the axial and transverse directions are characterized by ( v / U )  and a respectively. This has 
been done by calculating the leading terms in expansions (2), (3) and (12). It is also noted 
that matching with additional terms in expansions (3) and (2), which are known to be of 
the O(An/Re) and O(An), would persist by adding terms of O(A n) to expansion (12). 

It is finally observed that subsequent terms in the summation of equation (11) are of 
O(Re j A), j = 1, 2. These are negligible compared with A n for any n. Consequently in the 
context of the construction of an asymptotic expansion for ~p{w) the double-valuedness 
implied by the result (10) is of no consequence. 

4. Discussion 

There is ample evidence that wakes trail obstacles placed in uniform streams when 
Reynolds number is high. Their presence in low-Reynolds-number flows is hardly ob- 
servable experimentally and analyses recorded to date account for such region but only 
implicitly. This work is an explicit exposure of the wake in such flow. 
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